Configurative Correlation and Conformational Analysis of Strictosidine and Vincoside Derivatives ${ }^{\dagger}$

Ágnes Patthy-Lukáts, \ddagger Ákos K ocsis, \ddagger László F. Szabó,*, \ddagger and B. Podányi§
Institute of Organic Chemistry, Semmelweis University of Medicine, Hõgyes u. 7, H-1092 Budapest, and Chinoin Pharmaceutical and Chemical Works, Ltd., Tó utca 1-5, H-1045 Budapest, Hungary

Received April 5, 1999
On the basis of the configuration of C-15 of the secologanin unit, using detailed NMR analysis, the configuration of $\mathrm{C}-3$, the solution conformation around $\mathrm{C}-14$, and the glucosidic bridge, as well as those of the dihydropyran and tetrahydropyridine rings, were determined in the vincosamide and strictosamide derivatives $\mathbf{4 b}$ and $\mathbf{5 b}$. The stereochemical analysis was extended by chemical correlation to the 4-benzylated strictosidine and vincoside derivatives 3c and 3d. Experimental proof was presented for the interpretation of the "anomalous" chemical shift of acetylated strictosamide derivatives.

In the presence of the enzyme strictosidine synthase, the coupling reaction of tryptamine (1a) and secologanin (2a) gives strictosidine (3a) with complete stereoselectivity. ${ }^{2}$ However, in the absence of the enzyme, both strictosidine (3a) and vincoside (3b) are formed with low stereoselectivity. ${ }^{3}$ The configuration of the new center of chirality C-3 has been a subject of controversy; ${ }^{4}$ however, in the vincoside series this was determined unequivocally by X-ray diffraction analysis of $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-4-(4'"-bromobenzyl)vincoside (3d), prepared by direct coupling of N_{b} -4'-bromobenzyl-tryptamine (1b) and $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetylsecologanin (2b). ${ }^{5}$ The coupling reaction gave exclusively the vincoside derivative, and isomeric strictosidine derivatives could not be obtained in other ways in appropriate crystalline form. Previously, the stereochemistry of C-3 in the strictosidine derivatives was derived by complicated multistep chemical correlations that involved the danger of unexpected configurational changes. Similar uncertainties were experienced in the case of the dolicanthoside and isodol icanthoside (4-methyl derivatives of strictosidine and vincoside) during the study of their CD spectra. ${ }^{6,7}$ Therefore, in the strictosidine series, a rigorous proof of the configuration of C-3 was not possible for a long time. Recently, in our laboratory, this configuration has been proved by detailed NMR studies. ${ }^{8}$ The confusion in the 4-methyl derivatives was eliminated by reinterpretation of the CD spectra. ${ }^{9}$ It was still necessary, however, to place the stereochemistry of these terpenoid glycosides on a firm experimental base. The aim of the present work was to extend our previous results to other strictosidine and vincoside derivatives by preparative configurative correlations, as well as to demonstrate their conformations in solution.

Results and Discussion

The reaction sequences are shown in Scheme 1. Several conclusions were made and are enumerated as follows:

1. The starting point of the correlations was the result of the X-ray diffraction analysis of $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-4-(4"-bromobenzyl)vincoside (3d), which was prepared by the slightly modified method of Hutchinson et al. ${ }^{5}$ As in

[^0]the lactam series, the stereochemistry could be proved unequivocally by NMR spectroscopy; 3d was transformed into $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-18,19-dihydrovincosamide (4b, 84% yield) by catalytic hydrogenation invol ving saturation of the vinyl group, removal of the 4-bromobenzyl group, and spontaneous lactamization.
2. As $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-4-(4"-bromobenzyl)strictosidine (3c) could not be prepared by direct coupling, it was prepared from strictosidine (3a) ${ }^{8}$ by alkylation with 4-bromobenzyl bromide and subsequent acetylation (48% yield). After removal of the 4-bromobenzyl and saturation of the vinyl group, Iactamization in aqueous sodium carbonate solution at $70^{\circ} \mathrm{C}$ gave $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-18,19-dihydrostrictosamide (5b, 84% yield).
3. For rigorous correlation it was obviously necessary to prepare $\mathbf{4 b}$ and $\mathbf{5 b}$ from starting materials that had been formed simultaneously in the same reaction mixture. Therefore, by a slight modification of the method of Battersby et al., ${ }^{3}$ tryptamine (1a) and secol oganin (2a) were reacted to obtain strictosidine (3a) and vincoside (3b) in an approximately 1:1 ratio. However, in the reaction mixture, vincoside had already spontaneously lactamized to vincosamide (4a) and precipitated. ${ }^{3}$ After filtration and recrystallization, pure 4a was obtained (27% yield calculated from 2a). ${ }^{8}$ It was acetylated and hydrogenated to the same 4b (47\% yield) that was previously prepared according to point 1.
4. The mother liquor of the coupling reaction of point 3 afforded, after evaporation of the solvent, strictosidine (3a, 36% yield from 2a), which was lactamized in aqueous sodium carbonate at $70^{\circ} \mathrm{C}$ to strictosamide ($5 \mathrm{a}, 80 \%$ yield). ${ }^{3}$ This compound was acetylated and hydrogenated to the same 5b (75\% yield) that was previously prepared according to point 2.
These easy transformations under mild reaction conditions excluded the epimerization at any center of chirality. In the stereochemical analysis, ${ }^{10}$ the main problem was to determine the dominant conformation around C-14. In both series, the Newman projections of the nine possible conformers around bonds $\mathrm{C}-3-\mathrm{C}-14$ and $\mathrm{C}-14-\mathrm{C}-15$ (11-13, 21-23, 31-33) may be characterized by the vicinal ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ coupling constants according to the synclinal (sc) and antiperiplanar (ap) positions of the hydrogens attached to $\mathrm{C}-3, \mathrm{C}-14$, and $\mathrm{C}-15$ in both series (Table 1 and Figure 1). In the \mathbf{R} series, the R configuration of $\mathrm{C}-3(\mathrm{H}-3 \beta$ in the usual representation) was derived according to the result

Scheme 1. Configurative Correlation of Strictosidine and Vincoside Derivatives

Table 1. Relative Orientation of $\mathrm{H}-3$ and $\mathrm{H}-15$ to $\mathrm{H}-14$ proR and $\mathrm{H}-14$ proSa

H-3		H-15	H-3		H-15	H-3		H-15	H-14	H-3	H-15	H-3	H-15	H-3	H-15
ap ${ }^{\text {S11 }}$			ap ${ }^{\text {S12 }}$		S13					R11		R12		R13	
		sc			ap	ap		sc	proR	sc	ap	sc	sc	sc	sc
sc		ap	sc		sc	sc		sc	proS	R21		ap	${ }^{\text {ap }}$	R23	
sc		sc	sc $\mathbf{S 2 2}^{\text {2 }}$		ap	sc ${ }^{\text {S23 }}$		sc	proR	ap	ap	ap	SC	ap	sc
ap		ap	ap		sc	ap ${ }_{\text {s33 }}{ }^{\text {sC }}$			pros	sc	sc	sc	ap	sc	sc
	S31		sc $\mathbf{S 3 2}$							R31		R32		R33	
SC		sc			ap	sc		Sc	proR	sc	ap	sc	sc	sc	SC
SC		ap	Sc		sc	Sc		Sc	pros	sc	sc	SC	ap	SC	sc

${ }^{a}$ The letters ap and sc indicate antiperiplanar and synclinal orientation of the appropriate H 's, respectively.
of the X-ray diffraction analysis, ${ }^{5}$ while in the \mathbf{S} series, the conformers were derived by preliminary supposition (based on our previous analysis of strictosidine ${ }^{8}$) of the opposite S configuration at $\mathrm{C}-3(\mathrm{H}-3 \alpha)$. Each $\mathrm{C}-14$ conformer may exist in four ring conformers, according to the negative or positive half-chair conformation of the dihydropyran and tetrahydropyridine rings, respectively (NN, NP, PN, PP). Further issues were to determine the axial (A) or equatorial (E) position of the eventual benzyl group and the conformation around the glucosidic oxygen bridge. To facilitate the analysis, stereostructures were constructed by the ALCHEMY II program ${ }^{12}$ for the possible conformers. Detailed analysis of the NMR data gave the following results for the stereostructures of the intermediates and final products in solution.

The stereostructure of $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}, \mathrm{O}^{\prime}$ 'tetraacetyl-18,19-dihydrovincosamide (4b) and -dihydrostrictosamide (5b). Unlike the tetracyclic derivatives, in the pentacyclic lactams the number of possible conformers around C-14 is limited, because in each series there are only two conformers in which N-4 and C-22 are sufficiently close for cyclization. These are R12 and R33 for 4b, and S13 and $\mathbf{S 3 1}$ for 5b. For these conformers, the vicinal coupling constants of protons $\mathrm{H}-3, \mathrm{H}-14$, and $\mathrm{H}-15$ were estimated according to the dihedral angles of the appropriate pairs
of $\mathrm{C}-\mathrm{H}$ bonds. Because the four possible coupling patterns are different, comparison of the expected and measured coupling constants unequivocally established the conformation around $\mathrm{C}-14$ (Table 2). In 4b, H -14proS had Iarge coupling constants (12.5 and 13.0 Hz), whereas $\mathrm{H}-14$ proR was observed to have small coupling constants (3.6 and 3.5 Hz) with the vicinal protons $\mathrm{H}-3$ and $\mathrm{H}-15$, respectively. This pattern of J values is appropriate only for conformer R12 and establishes the axial orientation of $\mathrm{H}-3$ and $\mathrm{H}-15$ on the lactam ring. Conformer R33 would require small coupling constants for both $\mathrm{H}-14$ protons with each of the vicinal protons. In amide 5b, H-3 had small coupling constants with $\mathrm{H}-14$ proR $(2.8 \mathrm{~Hz})$ and $\mathrm{H}-14 \mathrm{proS}(5.5 \mathrm{~Hz})$. However, $\mathrm{H}-15$ had a large coupling constant (13.5 Hz) with $\mathrm{H}-14 \mathrm{proS}$ and small one (4.9 Hz) with $\mathrm{H}-14$ proR. This coupling pattern corresponds to the conformer S31 and established the equatorial position of H-3 to the Iactam ring. S13 would require large coupling constant between $\mathrm{H}-14$ proR and $\mathrm{H}-3$, rather than between $\mathrm{H}-14$ proS and H-15. It should be noted that R12 and S31 are the only two C-14 conformers where the lactam ring can take up a half-chair conformation.

In consideration of the established S configuration of C-5 in loganin ${ }^{13}$ (anal ogous to C-15 in the monoterpenoid indole alkaloids) as well as the independent determination of C-15

S series

$\mathbf{S 1 1}$

sc|sc

S12

N
H
S
SC
Sa

	$H-3$	$H-15$
$H-14 R$		

Figure 1. Newman formulas of the conformers around C-14. The letters ap and sc indicate antiperiplanar and synclinal orientation of the appropriate Hs , respectively.

Table 2. Comparison of Expected and Determined $\mathrm{H}-\mathrm{H}$ Coupling Constants (J) around C-14

interacting H-s	expectedJ in				$\begin{aligned} & \hline \text { determined J } \\ & \quad(\text { in } \mathrm{Hz}) \\ & \hline \end{aligned}$	
	S13	S31	R12	R33	4b	5b
H-3-H-14proR	large	small	small	small	2.8	3.6
H-3-H-14proS	small	small	large	small	5.5	12.5
H-15-H-14proR	small	small	small	small	4.9	3.5
H-15-H-14proS	small	large	large	small	13.5	13.0

in 3d, ${ }^{5}$ these results also establish for $\mathbf{4 b}$ the $\mathrm{R}(\mathrm{H}-3 \beta)$ and for $\mathbf{5 b}$ the $\mathrm{S}(\mathrm{H}-3 \alpha)$ configuration of $\mathrm{C}-3$. They are in agreement with the X-ray diffraction analysis in the \mathbf{R} series, ${ }^{5}$ and further confirm our previous determination in the \mathbf{S} series. ${ }^{9}$

The conformation of the dihydropyran ring was determined from the vicinal coupling constant ${ }^{3} 320,21$, which has a small value in both amide compounds $\mathbf{4 b}(1.9 \mathrm{~Hz})$ and $\mathbf{5 b}(1.8 \mathrm{~Hz})$. With respect to the configurations in secologanin, this value is characteristic for the trans diequatorial relationship of the two protons. This is possible only if the conformation of the ring is negative. Moreover, it involves the β-orientation of H -15 in both amides, as well as the β orientation in $\mathbf{4 b}$ and the α orientation in $\mathbf{5 b}$ of $\mathrm{H}-3$ in the usual representation.

The conformation of the tetrahydropyridine ring was established from the interpretation of the NOESY spectrum. H-3 displayed a cross-peak with one of the H-5 protons in both amides. The interacting protons should be in a cis diaxial relationship that concerns $\mathrm{H}-5 \beta$ in amide $\mathbf{4 b}$ and $\mathrm{H}-5 \alpha$ in amide 5b. In the first case this indicates a negative and in the second case a positive conformation of the tetrahydropyridine ring. These conformations were further confirmed by the observation that the other C-5 proton, that is, $\mathrm{H}-5 \alpha$ in $\mathbf{4 b}$ and $\mathrm{H}-5 \beta$ in $\mathbf{5 b}$, had a substantially higher δ value than its geminal partner (δ 5.14 vs $2.88,5.02$ vs 3.03 , respectively). This strong paramagnetic shift is due to the anisotropic effect of the carbonyl group, which can be effective only in an equatorial orientation of the appropriate proton to the tetrahydropyridine ring. ${ }^{14}$

According to this analysis, the three-dimensional shape of $\mathbf{4 b}$ and $\mathbf{5} \mathbf{b}$ can easily be seen (Figure $\mathbf{2}$). In $\mathbf{4 b}$, which
corresponds to the steric pattern R12NN, H-3 is in a β-axial orientation to the lactam ring, and C-2 takes the α equatorial orientation. The β equatorial orientation of C-5 to the lactam ring is in agreement with the data given in the discussion regarding the conformation of the tetrahydropyridine ring. The trans diequatorial attachment of this ring to the lactam ring endows the pentacyclic ring system with a flat shape. In 5b, which corresponds to the steric pattern S31NP, and in which H-3 has the α-equatorial orientation to the lactam ring, C-2 should assume a β-axial position, and C-5 will necessarily be in the β-equatorial orientation. Cis attachment of the tetrahydropyridinering to the Iactam ring forces the indole ring system into a position approximatively perpendicular to the other part of the aglycon unit.
The latter statement was further supported by the strong diamagnetic shift of one of the acetyl methyl signals in $\mathbf{5 b}$ ($\delta 1.20 \mathrm{ppm}$ vs 2.07, 1.99, 1.88 ppm for the others), which gave the possibility to determine simultaneously the conformation around the glucosidic O bridge. This "anomalous" chemical shift is well-known in all acetylated strictosamide derivatives since the first publication ${ }^{3}$ on strictosidine, but was not interpreted until recently. In 5b, the long-range carbon-proton coupling of this H -methyl and $\mathrm{H}-2^{\prime}$ with the same carbonyl carbon was detected by selective INEPT experiments ${ }^{15}$ that established that this acetyl group was attached to O-2' of the β-d-glucopyranosyl unit. The same conclusion was made by Aimi et al. ${ }^{16}$ in 5a on the basis of HMBC measurements. In addition, in the NOE SY spectrum of $\mathbf{5 b}$, cross-peaks of $\mathrm{H}-9$ and $\mathrm{H}-11$ with H-methyl were detected. This provides the first experimental proof for the steric proximity of the methyl group to the indole ring. Therefore the "anomal ous" shift results as a consequence of the diamagnetic effect of the ringcurrent of the aromatic indole ring. This proximity is strongly dependent on the conformation around the glycosidic oxygen bridge. In our previous paper on the stereochemical analysis on strictosidine, ${ }^{8}$ experimental and theoretical arguments were presented in favor of the most stable conformer around the glycosidic O bridge. In this conformer one of the nonbonding orbitals of the O bridge with the bond $\mathrm{O}-17-\mathrm{C}-21$, and the other with bond $\mathrm{C}-1^{\prime}-$ $0-5^{\prime}$ is in an ap position; that is, a double σ-conjugation is stabilizing this conformer. Model studies indicated that the

Figure 2. Three-dimensional structures of $\mathbf{3 c}, \mathbf{3 d}, \mathbf{4 b}$, and $\mathbf{5 b}(R=$ acetyl).

2'-acetoxy group can approach the indole ring system perpendicularly only in this conformation. Although this acetyl group has some conformation mobility around the O-acetyl bond, its preferred, least crowded orientation closest to the indole ring is shown in Figure 2. In the spectrum of the acetylated vincosamide derivatives, no "anomalous" shift was expected or observed, because the indole ring system is far away from any of the acetyl groups of the β-d-glucopyranosyl unit in any conformation. However, as the double σ-conjugation is independent of the other parts of the molecule, it may be supposed that the same conformation around the O bridge is dominant in all glucosidic secologanin derivatives.

The stereostructures of $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-4-(4"-bromobenzyl)strictosidine (3c) and -vincoside (3d) were considered next. The identical configuration of C-3 in the tetracyclic bases and the corresponding pentacydic lactams was proved by transformation of $\mathbf{3 c}$ into $\mathbf{5 b}$, and of $\mathbf{3 d}$ into $\mathbf{4 b}$ in two steps and under mild conditions. Accordingly, $\mathrm{C}-3$ has the S configuration in $3 \mathrm{c}(\mathrm{H}-3 \alpha)$ and the R configuration in $\mathbf{3 d}(\mathrm{H}-3 \beta)$. In both derivatives the small value of ${ }^{3} \mathrm{~J} 20,21$ indicated the negative conformation of the dihydropyran ring.

The conformation of the tetrahydropyridine ring was derived from the NOESY spectrum. In both compounds, one of the $\mathrm{H}-14$ protons gave a cross-peak with one of the H-5 protons. This is possible only if $\mathrm{C}-14$ and the interacting H-5 are in a cis diaxial orientation. According to the established configuration of $\mathrm{C}-3$, orientation of C -14 is β in 3c and α in 3d; therefore, the interacting H-5 proton ($\mathrm{H}-5 \beta$ in the former and $\mathrm{H}-5 \alpha$ in the latter compound) should have axial orientation, which is possible only in 3c in the negative, and in 3d in the positive conformation of
the tetrahydropyridine ring. In both compounds, the protons of the benzyl- CH_{2} group gave cross-peaks with $\mathrm{H}-3$ and with the equatorial H-5 proton. This means that the benzyl group in 3c has an α-axial orientation and in 3d has a β-axial orientation. In conclusion, the bulky ligands of $\mathrm{C}-3$ and $\mathrm{N}-4$ in both derivatives are in a trans diaxial position. M oreover, it should be noted that in both derivatives the benzyl protons gave NOE cross-peaks with the axial H-6 proton. This suggested an axial position of the benzyl group in which the $\mathrm{C}\left(\mathrm{H}_{2}\right)$-benzyl-C-1" bond was ap to the $\mathrm{N}-4-\mathrm{C}-5$ bond.

In the tetracyclic bases, the conformation around C-14 is not fixed by cyclization; therefore, none of the nine staggered conformers around C-14 may be disregarded a priori. The situation is simpler in 3d. One of the H-14 atoms has a large coupl ing constant with $\mathrm{H}-3$, and the other with $\mathrm{H}-15$, which established the ap orientation of the appropriate H atoms. R11 and R22 are the only two conformers corresponding to this coupling constant pattern. The distinction between these conformers was made by observing a medium-strong cross-peak between $\mathrm{H}-3$ and H-20 in the NOESY spectrum of 3d, which suggested a short, through-space distance between them. According to measurements on the computer-generated structures, these two protons are very close (1.9 \AA) in conformer R11, which is the favored one. In R22 the two protons would be too far (4.7 \AA) apart for a NOE to be observed.

In 3c the situation is more complicated; therefore, the carbon-proton coupling constants of this derivative were measured by an improved HETLOCK pulse sequence. ${ }^{17}$ They were used together with ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants and NOE observations to determine the dominant conformation. The moderately large coupling constant (8.7 Hz)

Table 3. Comparison of Torsion Angles around C - 14 with the Coupling Constants (J)

torsion angle of	in degrees, calcd for		measd J (in Hz)	
	S12d	S22d		
H-3-C-3-C-14-H-14proR	+166.0	+74.6	${ }^{3} \mathrm{~J} \mathrm{H} 3, \mathrm{H} 14 \mathrm{R}$	8.7
H-3-C-3-C-14-H-14proS	-74.6	-166.0	3J H3,H14S	4.2
H-3-C-3-C-14-C-15	+46.6	-44.8	${ }^{3} \mathrm{~J} \mathrm{H} 3, \mathrm{C} 15$	3.4
H-15-C-15-C-14-H-14proR	-130.1	-130.2	3J H14R,H15	5.8
H-15-C-15-C-14-H-14proS	+110.0	+110.0	${ }^{3} \mathrm{~J} \mathrm{H} 14 \mathrm{~S}, \mathrm{H} 15$	4.0
H-15-C-15-C-14-C-3	-11.0	-11.0	${ }^{3} \mathrm{~J} \mathrm{C}, \mathrm{H} 15$	5.6
N-4-C-3-C-14-H-14proR	+46.1	-45.2	${ }^{2} \mathrm{~J} \mathbf{C 3 , H 1 4 R}$	-6.0
N-4-C-3-C-14-H-14proS	+165.5	+74.1	${ }^{2} \mathrm{~J}$ с3, ${ }^{\text {14 }}$	-2.6

of $\mathrm{H}-3$ with one of the $\mathrm{H}-14$ atoms indicated one (approximately) ap orientation and excluded conformers of the S3 series ($\mathbf{S 3 1}, \mathbf{S 3 2}, \mathbf{S 3 3}$), where both H-14 atoms should have sc orientation to $\mathrm{H}-3 . \mathrm{H}-15$ has one small coupling constant to one of the $\mathrm{H}-14$ protons $(4.0 \mathrm{~Hz})$. However, the coupling constant of $\mathrm{H}-15$ to the other $\mathrm{H}-14$ gave an ambiguous value (5.8 Hz) that corresponded to neither a clear sc, nor a clear ap orientation of the appropriate hydrogens and suggested a distorted conformation around the $\mathrm{C}-14-\mathrm{C}-15$ bond. To find the most advantageous conformation, in the computer-generated mol ecular models, $\mathrm{H}-14 \mathrm{proR}$ in the $\mathbf{S 1}$ series and $\mathrm{H}-14 \mathrm{proS}$ in the $\mathbf{S} 2$ series were kept in an ap orientation, and the secol oganin subunit was turned around the $\mathrm{C}-14-\mathrm{C}-15$ bond by 360°, with continuous measurement of the through-space interatomic distances between the appropriate atoms of the secol oganin and tryptamine subunits. In both series, only a relatively narrow torsion angle interval (between -20° and $+5^{\circ}$ around $\mathrm{C}-3-\mathrm{C} 14-\mathrm{C}-15-\mathrm{H}-15$) was found in which no serious internal steric interferences would be expected. Finally, the torsion angle around C-3-C-14 was also slightly modified. As these conformers can be derived from $\mathbf{S} 12$ and $\mathbf{S 2 2}$ by a rotation of less than 60° around C-3-C-14 and C-14-C-15, respectively, the "distorted" structures remain in the original segment and are referred as the S12d and S22d conformers. The characteristic torsion angles of the two conformers and the value of the measured coupling constants that are influenced by these dihedral angles are shown in Table 3. The expected values of the coupling constants ${ }^{3} \mathrm{~J}$ н $14 \mathrm{R}-\mathrm{H} 15$ and ${ }^{3} \mathrm{~J}$ H14S, H15 in these structures were calculated using a modified Karplus-type equation. ${ }^{18}$ The tabulated values of 6.1 and 2.6 Hz are in good agreement with the measured coupling constants 5.8 and 4.0 Hz , respectively. The expected ${ }^{3} \mathrm{~J}$ с3, н15 coupl ing constant for these conformations was calculated to be 7.4 Hz by using the equation reported by Günther et al. ${ }^{19}$ This is somewhat higher than the measured value (5.6 Hz); however, the applied equation does not consider the effect of the electronegative substituent (namely, the N-4 atom) on the coupling constant. Another study established ${ }^{20}$ that such an effect reduced the coupling constant in steric arrangements corresponding to the conformers S12d and S22d, and thus the measured ${ }^{3} \mathrm{~J}$ сз,н15 is also in agreement with the expected structures.

Because the value of the measured vicinal coupling constants fitted both proposed conformers, the decision between them was made on the basis of ${ }^{2} \mathrm{~J} \mathrm{C}, \mathrm{H} 14$ couplingconstant values. It has been established for carbohydrates and for other compounds that, in $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ fragments, the value of ${ }^{2} \mathrm{~J} \mathrm{c}, \mathrm{H}$ depends on the dihedral angle of the hydrogen and the oxygen atoms. ${ }^{21}$ The substituent has a negative contribution of about 2 Hz to the coupling in synperiplanar and sc orientation, and a positive contribution of about 2 Hz in ap arrangements. By comparison of the coupling constants in simple O-glucosides and 2'deoxyribonucleosides, it was proved that the nitrogen atom
has the same effect on the coupling constants. ${ }^{22}$ In this case, the measured ${ }^{2} \mathrm{~J}$ сз,н14 coupling constants are -6.0 and -2.6 Hz . In the S22d conformation, both hydrogens of the $\mathrm{C}-14$ methylene group are sc to $\mathrm{N}-4$, so that similar coupling constants should be expected. However, in S12d, the $\mathrm{H}-14 \mathrm{proR}$ is in the sc orientation, while $\mathrm{H}-14 \mathrm{proS}$ is in an ap orientation to N-4. Therefore, the measured data suggested that S12d is the dominant conformer of 3c. Consequently, the signals showing -6.0 Hz and -2.6 Hz coupling constants with $\mathrm{C}-3$ can be assigned to the $\mathrm{H}-14$ proR and $\mathrm{H}-14 \mathrm{proS}$ atoms, respectively. In agreement with this assignment and the dominance of the S12d conformation, the signal assigned to the H-14proR shows a 8.7 Hz coupling constant due to the spin-spin interaction with H-3.

The NOESY spectrum was also in agreement with this structure. For the evalution of the results, the cross-peak intensity corresponding to a hypothetical atomic pair distance of $3.3 \AA$ was calculated by the two-spin approximation method and by using the NOE of the H-1'-H-5' interaction ($2.5 \AA$) as a reference value. The volume of all cross-peaks was integrated, and the higher or lower values compared to the reference integral were considered to be strong or weak. The distances of the atomic pairs having unambiguously defined orientation in the S12d conformer were compared with the cross-peak intensities. The through-space interatomic distances of the model corresponding to strong and weak cross-peaks lay in the 1.8-2.6 \AA and $2.6-3.7 \AA$ regions, respectively.

In summary, the conformation of the dihydropyran ring is negative in both compounds $\mathbf{3 c}$ and $\mathbf{3 d}$; that of the tetrahydropyridine ring is negative in $\mathbf{3 c}$ and positive in 3d. The favored conformation around the methylene bridge is S12d in 3c, and R11 in 3d. Consequently, the stereochemical notation of $\mathbf{3 c}$ is $\mathbf{S 1 2 d N N}$; that of 3d is R11NP. The three-dimensional shapes of $\mathbf{3 c}$ and $\mathbf{3 d}$ are shown in Figure 2.
It is hoped that the results described here will assist in the interpretation of further details of the chemistry of secologanin, which will be the subject of subsequent papers, and that the stereochemical problems of this important dass of alkal oids have been placed on a firm experimental base.

Experimental Section

General Experimental Procedures. NMR spectra were recorded on a Bruker AM-200 spectrometer at $200 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $50 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, on a Bruker AC-250 spectrometer at 250 $\mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $62 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, on a Bruker AC- 400 spectrometer at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, or on a Bruker DRX-400 spectrometer at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. TMS was used as the chemical-shift reference. COSY, NOESY, and selective TOCSY spectra were measured with the standard Bruker microprograms of the DISNMR or the XWINNMR software. In the phase-sensitive NOESY spectra a $600-\mathrm{ms}$ mixing time was used. The cross-peak intensities were categorized as strong, medium, or weak by visual inspection of the spectra for all compounds except for 3c, where the volumetric integration by the XWINNMR program was applied. The selectiveTOCSY spectra were measured with a 270° Gaussianshaped selective excitation pulse, 20-, 40-, $70-$, and $100-\mathrm{ms}$ spin-lock times. Selective INEPT spectra were measured with 10-ms selective rectangular $90^{\circ}{ }^{1} \mathrm{H}$ pulses, the delays were optimized for $7-\mathrm{Hz}$ couplings.

The organic solutions were dried with anhydrous sodium sulfate. TLC was carried out on Si gel plates eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (4:1), unless indi cated otherwise. Melting points are uncorrected. The optical rotation was measured at 583 nm (Na) on a Carl Zeiss polarimeter.
\mathbf{N}_{b}-4'-Bromobenzyltryptamine (1b). To a solution of 4-bromobenzaldehyde ($0.46 \mathrm{~g}, 2.5 \mathrm{mmol}$) in benzene (4.0 mL), tryptamine ($\mathbf{1 a}, 0.40 \mathrm{~g}, 2.5 \mathrm{mmol}$) was added, the reaction mixture refluxed for 4 h , and the solvent evaporated. The residue was treated with absolute $(\mathrm{Et})_{2} \mathrm{O}$ and, after filtration, gave N_{b}-4'-bromobenzylidenetryptamine ($\mathbf{1}, \mathrm{HY}=4$-bromobenzylidene) ($0.76 \mathrm{~g}, 90.8 \%, \mathrm{R}_{\mathrm{f}} 0.82, \mathrm{mp} 118-120^{\circ} \mathrm{C}$). The crude product ($0.31 \mathrm{~g}, 1.0 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(4.0 \mathrm{~mL})$, and sodium tetrahydridoborate ($0.06 \mathrm{~g}, 1,5 \mathrm{mmol}$) was added in portions with stirring at room temperature, then stirred for further 30 min , and finally refluxed for 2 h . After evaporation of the solvent, the residue was taken up in $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. The combined CHCl_{3} phase was dried and the solvent evaporated. The crude N_{b} -4^{\prime}-bromobenzyltryptamine ($\mathbf{1 b}, 0.28 \mathrm{~g}, 90 \%, \mathrm{mp} 78-80{ }^{\circ} \mathrm{C}$) was used directly. For analysis it was dissolved in 5 M ethanolic $\mathrm{HCl}(0.05 \mathrm{~mL})$, the hydrochloric acid salt precipitated by adding absolute $(\mathrm{Et})_{2} \mathrm{O}(2.0 \mathrm{~mL})$, and the precipitate was filtered and then washed with the same solvent: mp 227$230{ }^{\circ} \mathrm{C}$ (EtOH-hexane); anal. C 55.94\%, H 4.91\%, N 7.39\%, $\mathrm{Br} 22.12 \%$, calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrCIN}, \mathrm{C} 55.83 \%$, H 4.96\%, N 7.66\%, Br 21.85\%.

Secologanin (2a). Secologanin (2a) was isolated from Lonicera xylosteum L. according to a method elaborated in our Institute ${ }^{23}\left[\mathrm{R}_{\mathrm{f}} 0.29 ; \mathrm{CHCl}_{3}-\mathrm{MeOH}(4: 1)\right]$. ${ }^{1} \mathrm{H}$ NMR (acetone$\left.\mathrm{d}_{6}, 200 \mathrm{MHz}\right) \delta 9.71\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{6 \mathrm{a}, 7}=1.8 \mathrm{~J}^{3} \mathrm{~J}_{6 \mathrm{~b}, 7}=1.2 \mathrm{~Hz}, \mathrm{H}-7\right)$, 7.47 ($1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{3.5}=1.8 \mathrm{~Hz}, \mathrm{H}-3$), $5.61(1 \mathrm{H}, \mathrm{H}-8), 5.46(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{3} \mathrm{~J} 1,9=3.9 \mathrm{~Hz}, \mathrm{H}-1\right), 5.32-5.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10\right), 4.70\left(1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}\right)$, 4.50, 4.34, 4.27 (each $1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}$ сн,он $=5-6 \mathrm{~Hz}, 2^{\prime}, 3^{\prime}, 4^{\prime}-\mathrm{OH}$), $3.92-3.60\left(3 \mathrm{H}, \mathrm{H}_{2}-6^{\prime}, 6^{\prime}-\mathrm{OH}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.50-3.18$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}$), 2.83 (1 H , ddd, ${ }^{2} \mathrm{~J} 6 \mathrm{a}, 6 \mathrm{~b}=17.5,{ }^{3} \mathrm{~J} 5,6 \mathrm{a}=$ 6.1 , ${ }^{3}{ }_{6 \mathrm{a}, 7}=1.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}$), $2.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 2.42$ (1 H , ddd, $\left.{ }^{2}{ }^{3} 6 \mathrm{ab}, 6 \mathrm{~b}=17.5,{ }^{3} \mathrm{~J} 5.6 \mathrm{~b}=7.4,{ }^{3}{ }_{6 \mathrm{~b}, 7}=1.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right) ;{ }^{13} \mathrm{C}$ NMR (acetone- $\left.\mathrm{d}_{6}, 50 \mathrm{MHz}\right) \delta 202.0$ (C-7), 168.2 (C-11), 153.6 (C-3), 135.4 (C-8), 120.9 (C-10), 110.3 (C-4), 100.4 (C-1'), 97.5 (C-1), 78.7, 78.5 ($\left.\mathrm{C}-3^{\prime}, 5^{\prime}\right)$, 75.1 ($\mathrm{C}-2^{\prime}$), 72.2 (C-4'), $63.5\left(\mathrm{C}-6^{\prime}\right), 52.0$ $\left(\mathrm{OCH}_{3}\right), 45.7(\mathrm{C}-9), 45.1(\mathrm{C}-6), 27.3(\mathrm{C}-5)$.

0,0,0,0-Tetraacetylsecologanin (2b). Secologanin 2a $(7.5 \mathrm{~g}, 0.020 \mathrm{~mol})$ was dissolved in a mixture of anhydrous pyridine ($30 \mathrm{~mL}, 0.38 \mathrm{~mol}$) and (Ac$)_{2} \mathrm{O}(15 \mathrm{~mL}, 0.15 \mathrm{~mol}$), stirred at room temperature for 2 h , poured on to ice (150 g), and extracted with $\mathrm{CHCl}_{3}(3 \times 90 \mathrm{~mL})$. The combined CHCl_{3} layer was washed with 2 M aqueous $\mathrm{HCl}(2 \times 60 \mathrm{~mL}), 5 \%$ aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(2 \times 60 \mathrm{~mL})$ and dried. Evaporation of the solvent gave 0,0,0,O-tetraacetylsecol oganin 2b ($9.2 \mathrm{~g}, 84.5 \%, \mathrm{R}_{\mathrm{f}} 0.69$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta$ $9.71\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{6 \mathrm{a}, 7}=1.6,{ }^{3}{ }_{6 b, 7}=0.7 \mathrm{~Hz}, \mathrm{H}-7\right), 9.42(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{4} \mathrm{~J} 3,5=1.9 \mathrm{~Hz}, \mathrm{H}-3\right), 5.50\left(1 \mathrm{H}, \mathrm{dt},{ }^{3} \mathrm{~J} 8,10 \mathrm{E}=17.9,{ }^{3} \mathrm{~J} 8,9={ }^{3} \mathrm{~J} 8,10 z\right.$ $=8.9 \mathrm{~Hz}, \mathrm{H}-8), 5.28\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 1,9=2.9 \mathrm{~Hz}, \mathrm{H}-1\right), 5.23-4.97$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-10 \mathrm{E}, \mathrm{H}-10 \mathrm{Z}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}$), 4.88 ($1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 1^{1,2^{\prime}}=$ $\left.7.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.29\left(1 \mathrm{H}, \mathrm{dd}^{2}{ }^{2} \mathrm{~J} 6^{\prime}, 6^{\prime} \mathrm{b}=12.4\right.$, $^{3} \mathrm{~J}^{5}, 6^{\prime} \mathrm{a}=4.4 \mathrm{~Hz}$, H-6'a), 4.15 (1 H , dd, $\left.{ }^{2}{ }^{2}{ }^{6}{ }^{\prime}, 6^{\prime} \mathrm{b}=12.4,{ }^{3}{ }^{5}{ }^{5} 6^{\prime} \mathrm{b}=2.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right)$, $3.77-3.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.28(1 \mathrm{H}, \mathrm{dtd}$, $\left.{ }^{3} \mathrm{~J}_{5,6 \mathrm{~b}}=7.7,{ }^{3} \mathrm{~J}_{5,6 \mathrm{a}}={ }^{3} \mathrm{~J} 5,9=5.7,{ }^{4} \mathrm{~J}_{3,5}=1.9 \mathrm{~Hz}, \mathrm{H}-5\right), 2.92(1 \mathrm{H}$, ddd, $\left.{ }^{2}{ }^{\mathrm{J}}{ }_{6 \mathrm{a}, 6 \mathrm{~b}}=17.8,{ }^{3} \mathrm{~J}_{5,6 \mathrm{a}}=5.7,{ }^{3} \mathrm{~J}_{6 \mathrm{a}, 7}=1.6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 2.85-$ $2.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 2.39\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2}{ }^{\mathrm{J}}{ }_{6 \mathrm{a}, 6 \mathrm{~b}}=17.8,{ }^{3} \mathrm{~J}_{5.6 \mathrm{~b}}=7.7\right.$, ${ }^{3} \mathrm{~J}_{6 \mathrm{~b}, 7}=0.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}$), 2.11, 2.03, 2.01, 1.91 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ $\mathrm{CO}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 50 \mathrm{MHz}$) $\delta 205.9$ (C-7), 170.6, 170.2, 169.4, 168.9 ($4 \mathrm{CH}_{3} \mathrm{CO}$ of acetyl), 166.8 (C-11), 151.3 (C-3), 132.3 (C-8), 121.1 (C-10), 109.6 (C-4), 95.8 (C-1, C-1'); 72.3 (C$\left.3^{\prime}\right), 72.4\left(\mathrm{C}-2^{\prime}\right), 70.6\left(\mathrm{C}-4^{\prime}\right), 68.1\left(\mathrm{C}-5^{\prime}\right), 61.6\left(\mathrm{C}-6^{\prime}\right), 51.3\left(\mathrm{CH}_{3} \mathrm{O}\right)$, 43.7 (C-9), 43.3 (C-6), 25.1(C-5), 20.7, 20.6, 20.1 (each CH_{3} CO).

Strictosidine (3a) and Vincosamide (4a). Tryptamine base ($\mathbf{1 a}, 0.16 \mathrm{~g}, 0.10 \mathrm{mmol}$) and tryptaminium chloride (1a$\mathrm{HCl}, 0.20 \mathrm{mmol})$ were dissol ved in a mixture of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and glacial HOAc (0.50 mL), secologanin ($2 \mathrm{a}, 0.76 \mathrm{~g}, 0.20$ mmol) was added, and the solution stirred in a N_{2} atmosphere at $100{ }^{\circ} \mathrm{C}$ for 6 h . From the cooled reaction mixture the precipitated vincosamide (4a) was filtered, and the mother liquor extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried, and the solvent evaporated. The residue (5a) was crystallized from acetone ($0.27 \mathrm{~g}, 27 \%$). Isolation of strictosidine ($3 \mathrm{a}, 0.39 \mathrm{~g}, 36 \%$) from the mother liquor as well as its spectroscopic data were described previ-
ously. ${ }^{8}$ The combined yield of the two products, $\mathbf{3 a}$ and $\mathbf{5 a}$, is 0.66 g (63\%). Spectroscopic data of vincosamide (4a): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 250 \mathrm{MHz}\right) \delta 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-17), 7.58\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 9,10=\right.$ $\left.7.6{ }^{4} \mathrm{~J} 9,11=1.2 \mathrm{~Hz}, \mathrm{H}-9\right), 7.46\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}{ }^{11,12}=7.9,{ }^{4} \mathrm{~J} 10,12=\right.$ $1.2 \mathrm{~Hz}, 12-\mathrm{H}), 7.24\left(1 \mathrm{H}, \mathrm{ddd},{ }^{3} \mathrm{~J} 11,12=7.9,{ }^{3} \mathrm{~J}^{10,11}=7.11^{4} \mathrm{~J}_{9,11}=\right.$ $1.2 \mathrm{~Hz}, \mathrm{H}-11), 7.15\left(1 \mathrm{H}, \mathrm{ddd},{ }^{3}{ }^{3}{ }_{9,10}=7.6,{ }^{3} \mathrm{~J}_{10,11}=7.1,{ }^{4} \mathrm{~J}_{10,12}=\right.$ $1.2 \mathrm{~Hz}, \mathrm{H}-10), 5.71\left(1 \mathrm{H}, \mathrm{dt},{ }^{3} \mathrm{~J}_{182,19}=17.1^{3} \mathrm{~J}^{18 \mathrm{E}, 19}={ }^{3} \mathrm{~J}_{19,20}=\right.$ $10.0 \mathrm{~Hz}, \mathrm{H}-19), 5.67\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 20,21=1.6 \mathrm{~Hz}, \mathrm{H}-21\right), 5.45(1 \mathrm{H}$, dd, ${ }^{3}{ }^{18 z, 19}=17.1$, $\left.{ }^{2}{ }^{18 E, 182}=2.1 \mathrm{~Hz}, \mathrm{H}-18 Z\right), 5.35(1 \mathrm{H}, \mathrm{dd}$, 3) $\left.18 \mathrm{E}, 19=10.0{ }^{2}{ }^{2} \mathrm{~J} 18 \mathrm{E}, 18 \mathrm{Z}=2.1 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{E}\right), 5.23\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{3,14 \mathrm{~S}}\right.$ $=11.9$, $\left.{ }^{3}{ }_{3.14 \mathrm{R}}=3.8 \mathrm{~Hz}, \mathrm{H}-3\right), 5.09(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \alpha), 3.20-2.85$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \beta, \mathrm{H}-6 \alpha, \mathrm{H}-6 \beta, \mathrm{H}-15, \mathrm{H}-20$), 2.63 ($1 \mathrm{H}, \mathrm{dt},{ }^{2} \mathrm{~J} 14 \mathrm{R}, 14 \mathrm{~S}$ $=13.2,{ }^{3}{ }^{3} 3,14 \mathrm{R}=3.8$, $\left.{ }^{3}{ }^{3} 14 \mathrm{R}, 15=3.8, \mathrm{H}-14 \mathrm{proR}\right), 1.62(1 \mathrm{H}, \mathrm{td}$, $\left.{ }^{3} \mathrm{~J}_{145,15}={ }^{2} \mathrm{~J} 14 \mathrm{R}, 14 \mathrm{~S}=13.2,{ }^{3} \mathrm{~J}_{3,14 \mathrm{~S}}=11.9, \mathrm{H}-14 \mathrm{proS}\right)$; ${ }^{13} \mathrm{C}$ NMR spectral data, the same as those reported by Heckendorf et al. ${ }^{24}$
$\mathbf{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-Tetraacetyl-4-(4'-bromobenzyl) strictosidine (3c) from 3a. To a solution of strictosidine hydrochloride ($3 \mathrm{a} \cdot \mathrm{HCl}, 0.27 \mathrm{~g}, 0.5 \mathrm{mmol}$) in MeCN (3.0 mL) 4-bromobenzyl chloride ($0.1 \mathrm{~g}, 0.5 \mathrm{mmol}$) and Dowex-1 ion-exchange resin in the hydroxy ion form (0.5 g) was added and stirred at room temperature for 2 h . Then the resin was filtered and washed with acetonitrile (5 mL), the combined filtrate was dried, and the solvent was evaporated. The 4-(4'-bromobenzyl)strictosidine ($\mathbf{3}, \mathrm{R}=\mathrm{H}, \mathrm{Y}=4^{\prime}$-bromobenzyl) was obtained as a pale yellow solid (0.2 g , single spot, $\mathrm{R}_{\mathrm{f}} 0.54$). It was immediately used for the next reaction.

A mixture of absolute pyridine (1.5 mL), (Ac$)_{2} \mathrm{O}(0.6 \mathrm{~mL}$, 6.3 mmol) and 4-(44^{\prime}-bromobenzyl) strictosidine ($\mathbf{3}, \mathrm{R}=\mathrm{H}, \mathrm{Y}=$ 4'-bromobenzyl, $0.17 \mathrm{~g}, 0.25 \mathrm{mmol}$) was stirred at room temperature for 2 h . The reaction mixture was poured onto ice (10 g), extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$, and the combined organic layer was washed with molar aqueous $\mathrm{HCl}(10 \mathrm{~mL})$, 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL), $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried, and the solvent evaporated. The $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}-$ tetraacetyl (4"bromobenzyl) strictosidine (3c) was obtained as a pale yellow solid ($0.19 \mathrm{~g}, 51 \%$ calculated from 3a, $\mathrm{R}_{\mathrm{f}} 0.84$); anal. C 57.69%, H $5.31 \%, \mathrm{~N} 3.12 \%$, $\mathrm{Br} 9,13 \%$, calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Br}, \mathrm{C}$ 58.11%, H 5.46%, N 3.23%, Br 9.21%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 400$ $\mathrm{MHz}) \delta 7.98(1 \mathrm{H}$, br s, H-1), $7.65(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 7.51(2 \mathrm{H}, \mathrm{d}$, $\left.3^{3} 2^{\prime \prime} 3^{\prime \prime}={ }^{3} \mathrm{~J}_{5^{\prime \prime} 6^{\prime \prime}}=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5^{\prime}\right), 7.44\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{15,17}=1.9, \mathrm{~Hz}\right.$, H-17), 7.3-7.2 (3H, m, H-10, H-11, H-12), 7.20 ($2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 2^{\prime \prime} 3^{\prime \prime}$ $\left.={ }^{3} \mathrm{~J}_{5 \prime 6} 6^{\prime \prime}=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 5.55\left(1 \mathrm{H}\right.$, ddd, ${ }^{3} \mathrm{~J} 182,19=17.2$, ${ }^{3} \mathrm{~J}{ }^{18 \mathrm{E}, 19}$ $\left.=10.4,{ }^{3}{ }^{19,20}=9.4 \mathrm{~Hz}, \mathrm{H}-19\right), 5.5-5.3\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 3^{\prime}, 4^{\prime}\right), 5.36$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 20,21=3.1 \mathrm{~Hz}, \mathrm{H}-21\right), 5.01\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}{ }_{18 \mathrm{E}, 19}=10.4\right.$, $\left.{ }^{2} \mathrm{~J} 18 \mathrm{E}, 182=1.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{E}\right), 4.89\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}{ }^{182,19}=17.2,{ }^{2}{ }^{\mathrm{J}}{ }^{188 \mathrm{E}, 182}\right.$ $=1.6 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{Z}), 4.78\left(1 \mathrm{H}, \mathrm{d}^{3}{ }^{3} \mathrm{I}^{\prime}, 2^{2}=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.36(1 \mathrm{H}$, dd, $\left.{ }^{2}{ }^{3} 6^{\prime} \mathrm{a}, 6^{\circ} \mathrm{b}=12.5,{ }^{3} \mathrm{~J}^{5^{\prime}, 6^{\prime} \mathrm{a}}=3.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.99\left(1 \mathrm{H}, \mathrm{dd},{ }^{3}{ }^{3}{ }_{3,14 \mathrm{R}}\right.$ $\left.=8.7,3^{3} 3,145=4.2 \mathrm{~Hz}, \mathrm{H}-3\right), 3.94\left(1 \mathrm{H}, \mathrm{dd}^{2}{ }^{2}{ }_{6}{ }^{6}, 6 \mathrm{~b}=12.5 \mathrm{~Hz}\right.$,
 $\left(1 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\text {лсна, Nснb }}=13.2 \mathrm{~Hz}, \mathrm{Hb}\right.$-benzyl-CH 2), $3.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.23\left(1 \mathrm{H}, \mathrm{tdd},{ }^{3} \mathrm{~J} 15,20={ }^{3} \mathrm{~J} 14 \mathrm{R}, 15=5.8 ;{ }^{3} \mathrm{~J} 145,15=4.2 ;{ }^{4} \mathrm{~J} 15,17\right.$ $=1.9 \mathrm{~Hz}, \mathrm{H}-15), 3.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 2.97$ ($1 \mathrm{H}, \mathrm{ddd},{ }^{2} \mathrm{~J}_{5 \alpha, 5 \beta}$ $\left.=13.3,{ }^{3}{ }_{5 \beta, 6 \alpha}=10.6,{ }^{3}{ }_{5 \beta}{ }^{5}, 6 \beta=4.5 \mathrm{~Hz}, \mathrm{H}-5 \beta\right), 2.81(1 \mathrm{H}, \mathrm{ddd}$, ${ }^{3}$] $\left.19,20=9.4 ;{ }^{3}{ }^{15,20}=5.8,{ }^{3}{ }^{20,21}=3.1 \mathrm{~Hz}, \mathrm{H}-20\right), 2.80(1 \mathrm{H}$, ddd, $\left.{ }^{2}{ }^{5 \alpha \alpha, 6 \beta}=15.5,{ }^{3}{ }^{3} 5 \beta, 6 \alpha=10.6,{ }^{3}{ }^{3} 5 \alpha, 6 \alpha=5.3 \mathrm{~Hz}, \mathrm{H}-6 \alpha\right), 2.71$ ($1 \mathrm{H}, \mathrm{ddd}^{2}{ }^{2} \mathrm{~J}_{5 \alpha, 5 \beta}=13.3,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \alpha}=5.3,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \beta}=1.4 \mathrm{~Hz}, \mathrm{H}-5 \alpha$), $2.29\left(1 \mathrm{H}\right.$, ddd, $\left.{ }^{2}{ }^{2}{ }_{6 \alpha, 6 \beta}=15.5,{ }^{3} J_{5 \beta, 6 \beta}=4.5,{ }^{3} J_{5 \alpha, 6 \beta}=1.4 \mathrm{~Hz}, \mathrm{H}-6 \beta\right)$, $2.27\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} \mathrm{~J}_{14 \mathrm{R}, 14 \mathrm{~S}}=14.3,{ }^{3} \mathrm{~J}_{3,14 \mathrm{~S}}={ }^{3} \mathrm{~J}_{145,15}=4.2 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{~S}\right)$, $1.83\left(1 \mathrm{H}\right.$, ddd, ${ }^{2} \mathrm{~J}{ }_{14 \mathrm{R}, 14 \mathrm{~S}}=14.3,{ }^{3} \mathrm{~J}_{3,14 \mathrm{R}}=8.7,{ }^{3} \mathrm{~J}_{14 \mathrm{R}, 15}=5.8 \mathrm{~Hz}$, $\mathrm{H}-14 \mathrm{R}$), $1.80,1.76,1.69,1.66$ (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$). The assignments were supported by a COSY spectrum. Some coupling constants were obtained from selective TOCSY measurements. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.7,170.3$, 169.4, 169.1 (each $\mathrm{CH}_{3} \mathrm{CO}$), 167.3 (C-22), 150.7 (C-17), 139.1 (C-1"), 135.9a (C-2), 135.4a (C-13), 133.2 (C-19), 131.3c (C$\left.3^{\prime \prime}, 5^{\prime \prime}\right), 130.9 \mathrm{C}\left(\mathrm{C}-2^{\prime \prime}, 6^{\prime \prime}\right), 127.2$ (C-8), 121.3 (C-11), 120.5 (C18), 120.7 (C-4"), 119.1 (C-10), 118.0 (C-9), 111.7 (C-16), 110.9 (C-12), 107.7 (C-7), 96.4 (C-21), 95.9 (C-1'), 72.3b (C-3'), 72.2 b (C-5'), 70.7 (C-2'), $68.2\left(\mathrm{C}-4^{\prime}\right), 61.6\left(\mathrm{C}-6^{\prime}\right), 58.6(\mathrm{C}-3), 57.0\left(\mathrm{CH}_{2}-\right.$ benzyl), $51.3\left(\mathrm{CH}_{3} \mathrm{O}\right)$, 44.7 (C-20), $42.2(\mathrm{C}-5), 34.4(\mathrm{C}-14), 28.8$ (C-15), 20.8, 20.7, 20.6, 20.2 (each $\mathrm{CH}_{3} \mathrm{CO}$), 16.6 (C-6); a, b, c, revised assignment is also possible. ${ }^{13} \mathrm{C}^{-1} \mathrm{H}$ coupling constants in Hertz (the magnitude and the sign of the coupling constants were determined from the displacement of the signals in the

HETLOCK spectrum ${ }^{15}$): ${ }^{3}{ }_{\mathrm{c} 15, \mathrm{H} 3}=+3.2,{ }^{3}{ }_{\mathrm{C}, \mathrm{H} 15}=+5.5$, ${ }^{3} \mathrm{~J} \mathrm{C} 20, \mathrm{H} 18 \mathrm{z}=+6.3,{ }^{3} \mathrm{~J} \mathrm{C} 20, \mathrm{H} 18 \mathrm{E}=+11.6,{ }^{2} \mathrm{~J} \mathrm{C} 20, \mathrm{H} 21=+0.3,{ }^{3} \mathrm{~J} \mathrm{C} 15, \mathrm{H} 19$ $=+5.1,{ }^{2} \mathrm{~J} \mathrm{C} 20, \mathrm{H} 15=-7.1,{ }^{2} \mathrm{~J} \mathrm{C} 15, \mathrm{H} 20=-3.5,{ }^{2} \mathrm{~J} \mathrm{C} 15, \mathrm{H} 14 \mathrm{~S}=-5.0$, ${ }^{2} \mathrm{~J} \mathrm{C}, \mathrm{H} 14 \mathrm{~S}=-2.6,{ }^{2} \mathrm{~J} \mathrm{C} 3, \mathrm{H} 14 \mathrm{R}=-6.0,{ }^{2} \mathrm{~J} \mathrm{C} 14, \mathrm{H} 3=-4.0,{ }^{2} \mathrm{~J} \mathrm{C} 14, \mathrm{H} 15=$ -5.3. The cross-peak intensities of the NOESY spectrum were obtained from volume integration by the XWI NNMR program. The intensity of the NOE interaction corresponding to $3.3 \AA$ distance of two hydrogens were calculated by the two independent spin approximation from the known $2.5 \AA$ distance of $\mathrm{H}-\mathrm{I}^{\prime}$ and $\mathrm{H}-5^{\prime}$ hydrogens and from the measured cross-peak intensity of this interaction. NOEs larger and smaller than the calculated value are denoted as strong (s) and weak (w), respectively. List of NOESY cross-peaks: H-1, H-3 s, H-12 w, H-14proS w, H-15 s; H-3, H-14proS s, H-14proR w, H-15 s, H-20 w, Ha-benzyl-CH $2 \mathrm{~s}, \mathrm{Hb}$-benzyl- CH_{2} w; $\mathrm{H}-5 \alpha, \mathrm{H}-5 \beta \mathrm{~s}$, H-6 β w, H b-benzyl-CH 2 s; H-5 $, \mathrm{H}-5 \alpha \mathrm{~s}, \mathrm{H}-6 \beta \mathrm{~s}, \mathrm{H}-14$ proR $\mathrm{s} ;$ $\mathrm{H}-6 \alpha, \mathrm{H}-6 \beta \mathrm{~s}, \mathrm{H}-9 \mathrm{w}$, Ha-benzyl-CH2 w, H b-benzyl-CH CH_{2}; H- 6β, $\mathrm{H}-5 \beta \mathrm{~s}, \mathrm{H}-6 \alpha \mathrm{~s}, \mathrm{H}-9$ w; H-9, H-6 α w, H-6 β w, H-10 s; H-14proR, H-3 w, H-5 β s, H-14proS s, H-15 w, H-20 w; H-14proS, H-3 s, H-14proR s, H-15 w; H-15, H-1 s, H-3 s, H-14proR w, H-14proS w, H-20 s, H-2" w, Ha-benzyl-CH 2 w; H-18E, H-18Z s, H-19 s; $\mathrm{H}-18 \mathrm{Z}, \mathrm{H}-18 \mathrm{E}$ s, $\mathrm{H}-20 \mathrm{~s} ; \mathrm{H}-19, \mathrm{H}-18 \mathrm{E}$ s, H-20 w; H-20, H-3 w, H-14proR w, H-15 s, H-18Z s, H-19 w, H-21 s; H-21, H-20 s, H-18Z w; Ha-benzyl-CH2, H-3 s, H-6 α w, H-15 w, Hb-benzyl$\mathrm{CH}_{2} \mathrm{~s}, \mathrm{H}-2^{\prime \prime} 2.6 \mathrm{~s} ; \mathrm{Hb}-$ benzyl-CH2, H-5 $2.3 \mathrm{~s}, \mathrm{H}-6 \alpha 2.3 \mathrm{~s}$, Ha-benzyl- $\mathrm{CH}_{2} \mathrm{~s}, \mathrm{H}-2^{\prime \prime} \mathrm{s}$.
$\mathbf{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathbf{O}^{\prime}$-Tetraacetyl-4-(4'-bromobenzyl)vincoside (3d). N_{b}-4'-bromobenzyltryptaminium chloride ($\mathbf{1 b} \cdot \mathrm{HCl}, 0.25$ g, 0.06 mmol) was dissolved in $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$ and, after the addition of 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (1 mL), was extracted with $\mathrm{CHCl}_{3}(3 \times 3.0 \mathrm{~mL})$. The combined CHCl_{3} solution was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$, dried, and the solvent evaporated. The residue was taken up in $\mathrm{C}_{6} \mathrm{H}_{6}(5.0 \mathrm{~mL}), \mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{O}-$ tetraacetylsecologanin ($\mathbf{2 b}, 0.34 \mathrm{~g}, 0.6 \mathrm{mmol}$) was added, and the reaction mixture refluxed for 3 h . The solvent was evaporated, and the residue crystallized from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (1:1, 1.5 mL). $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-Tetraacetyl-4-(4"-bromobenzyl)vincoside (3d) was obtained as colorless crystals ($0.48 \mathrm{~g}, 91 \%, R_{f}$ $0.86, \mathrm{mp} 159-160^{\circ} \mathrm{C},[\alpha]^{25}-63^{\circ}(\mathrm{c} \mathrm{0.1} \mathrm{MeOH}$,$) ; IR (KBr),$ cm^{-1} : 1715, 1680 ($\nu \mathrm{C}=\mathrm{O}$); anal. C 57.53%, H 5.35%, N 3.17%, $\mathrm{Br} 9.15 \%$, calcd for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Br}, \mathrm{C} 58.11 \%, \mathrm{H} 5.46 \% \mathrm{~N}$ $3.23 \%, \mathrm{Br} 9.21 \%$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{H}-1), 7.51\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 9,10=8.3,{ }^{4} \mathrm{~J} 9,11=1.4 \mathrm{~Hz}, \mathrm{H}-9\right), 7.49(2 \mathrm{H}$, d, $\left.{ }^{3}{ }^{2} 2^{\prime \prime}, 3^{\prime \prime} \mathrm{Hz}={ }^{3} \mathrm{~J}_{5^{\prime \prime}, 6^{\prime \prime}}=8.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, 5^{\prime \prime}\right), 7.32\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}{ }_{11,12}=\right.$ 7.9 , $\left.\mathrm{J}^{10,12}=1.2 \mathrm{~Hz}, \mathrm{H}-12\right), 7.31\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}^{45,17}=1.4 \mathrm{~Hz}, \mathrm{H}-17\right)$, $7.24\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}^{\prime \prime}, 3^{\prime \prime} \mathrm{Hz}={ }^{3} \mathrm{~J}_{5^{\prime \prime}, 6^{\prime \prime}}=8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, 6^{\prime \prime}\right), 7.14(1 \mathrm{H}$, ddd, $\left.{ }^{3} \mathrm{~J}_{11,12}=7.9{ }^{3} \mathrm{~J}_{10,11}=7.11^{4} \mathrm{~J}_{9,11}=1.4 \mathrm{~Hz}, \mathrm{H}-11\right), 7.10(1 \mathrm{H}$, ddd, $\left.{ }^{3}{ }^{3} 9,10=8.3,{ }^{3}{ }^{3}{ }^{10,11}=7.1,{ }^{4} \mathrm{~J} 9,11=1.4 \mathrm{~Hz}, \mathrm{H}-10\right), 5.53(1 \mathrm{H}$, ddd, ${ }^{3} \mathrm{~J}{ }_{182,19}=17.2$, ${ }^{3}$ J ${ }^{18 E, 19}=10.2$, $\left.{ }^{3}{ }^{3} 19,20=9.5 \mathrm{~Hz}, \mathrm{H}-19\right), 5.30-$ 5.08 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, 3^{\prime}, 4^{\prime}$), 5.18 ($1 \mathrm{H}, \mathrm{dd},{ }^{3}{ }^{3} 18 \mathrm{E}, 19=10.2,^{2}{ }^{2} \mathrm{~J} 18 \mathrm{E}, 182$ $=1.8 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{E}), 5.16\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 20,21=4.0 \mathrm{~Hz}, \mathrm{H}-21\right), 4.88$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} \mathrm{I}^{\prime}, 2^{\prime}=8.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.86\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 18 z, 19=17.2\right.$, $\left.{ }^{2} \mathrm{~J} 18 \mathrm{E}, 18 \mathrm{z}=1.8 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{Z}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}^{2}{ }^{2}{ }^{6}{ }^{\prime} \mathrm{a}, 6^{5} \mathrm{~b}=12.4,{ }^{3}{ }^{3}{ }^{5}, 6^{\prime} \mathrm{a}\right.$ $=4.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}$), $4.24\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J} \mathrm{\sigma}^{\prime} \mathrm{a}, \mathrm{f}^{\circ} \mathrm{b}=12.4,{ }^{3} \mathrm{~J}{ }_{5}{ }^{\prime} 6^{\prime} \mathrm{b}=2.3 \mathrm{~Hz}\right.$, H-6'b), $3.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 3.76\left(1 \mathrm{H}, \mathrm{d}^{2}{ }^{2} \mathrm{~J}_{\text {мсна, мснь }}=13.1 \mathrm{~Hz}\right.$, Ha -benzyl-CH2$), 3.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.59\left(1 \mathrm{H},{ }^{2} \mathrm{~J}_{\text {Nсна, }}\right.$, $\mathrm{CHb}=$ $13.1 \mathrm{~Hz}, \mathrm{Hb}$-benzyl-CH $)_{2}$), $3.48\left(1 \mathrm{H}, \mathrm{dd}^{3} \mathrm{~J}_{3,14 \mathrm{~S}}=9.4,{ }^{3} \mathrm{~J}_{3,14 \mathrm{R}}=\right.$ $5.5 \mathrm{~Hz}, \mathrm{H}-3), 3.41\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} \mathrm{~J}_{5 \alpha, 5 \beta}=13.7,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \beta}=11.8,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \alpha}\right.$ $=4.8 \mathrm{~Hz}, \mathrm{H}-5 \alpha), 3.16\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} \mathrm{~J}_{5 \alpha, 5 \beta}=13.7,{ }^{3} \mathrm{~J}_{5 \beta .6 \beta}=5.7\right.$, $\left.{ }^{3} \mathrm{~J}_{5 \beta, 6 \alpha}=1.0 \mathrm{~Hz}, \mathrm{H}-5 \beta\right), 3.06\left(1 \mathrm{H}, \mathrm{dtd},{ }^{3} \mathrm{~J}_{14 \mathrm{R}, 15}=9.5,{ }^{3} \mathrm{~J}_{145,15}=\right.$ $\left.{ }^{3} \mathrm{~J}^{55,20}=5.3,{ }^{4} \mathrm{~J}{ }_{15,17}=1.4 \mathrm{~Hz}, \mathrm{H}-15\right), 2.96\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} \mathrm{~J}^{6 \alpha, 6 \beta}=\right.$ $\left.16.2,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \beta}=11.8,{ }^{3} \mathrm{~J}_{5 \beta, 6 \beta}=5.7 \mathrm{~Hz}, \mathrm{H}-6 \beta\right), 2.57\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} \mathrm{~J}^{6 \alpha, 6 \beta}\right.$ $\left.=16.2,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \alpha,}=4.8,{ }^{3} \mathrm{~J}_{5 \beta, 6 \alpha}=1.0 \mathrm{~Hz}, \mathrm{H}-6 \alpha\right), 2.30(1 \mathrm{H}$, ddd, $\left.{ }^{2}{ }^{2}{ }_{14 R 145}=14.3,{ }^{3}{ }^{3} 14 \mathrm{R}, 15=9.5 \mathrm{~Hz},{ }^{3}{ }^{3}{ }_{3,14 \mathrm{R}}=5.5, \mathrm{H}-14 \mathrm{proR}\right), 2.12$, 2.05, 2.04, 1.96 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$), 2.00 (1 H , ddd, ${ }^{3}{ }^{3} 19,20=$ $9.5,^{3} \mathrm{~J} 15,20=5.3,{ }^{3} \mathrm{~J} 20,21=4.0 \mathrm{~Hz}, \mathrm{H}-20$), 1.52 ($1 \mathrm{H}, \mathrm{ddd},{ }^{2} \mathrm{~J} 14 \mathrm{R} 14 \mathrm{~S}$ $\left.=14.3,3^{3,145}=9.4,{ }^{3} \mathrm{~J}_{145,15}=5.3 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{proS}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.8,170.2,169.4,169.1$ (each $\mathrm{CH}_{3} \mathrm{CO}$), 167.4 (C-22), 150.7 (C-17), 138.9 (C-1"), 135.7 (C-13), 134.8 (C2), 133.7 (C-19), 131.4c (C-3", $5^{\prime \prime}$), 131.3c ($\left.\mathrm{C}-2^{\prime \prime}, 6^{\prime \prime}\right), 127.4$ (C8), 121.3 (C-11), 120.8 (C-4"), 119.6 (C-18), 119.2 (C-10), 118.0 (C-9), 111.7 (C-16), 110.8 (C-12), 106.8 (C-7), 96.2 (C-21), 95.8 (C-1'), 72.5b (C-3'), 72.1b (C-5'), 70.7 (C-2'), 68.2 (C-4'), 61.7 (C-6'), $56.4\left(\mathrm{CH}_{2}\right), 51.3 \mathrm{a}\left(\mathrm{OCH}_{3}\right), 51.2 \mathrm{a}(\mathrm{C}-3), 44.3(\mathrm{C}-5), 42.4$ (C-20), 33.8 (C-14), 26.4 (C-15), 20.8, 20.6, 20.5, 20.2 (each CH_{3}

CO); 17.1 (C-6); a, b, c, revised assignment is also possible. NOESY cross-peaks (s, strong; m, medium; w, weak; v, very weak): H-1, H-3 w, H-12 w, H-15 w; H-3, H-14proR w, H-14proS v, H-15 w, H-18Z w, H-20 m, H-2' m, Hb-benzyl$\mathrm{CH}_{2} \mathrm{~m} ; \mathrm{H}-5 \alpha, \mathrm{H}-5 \beta \mathrm{~s}, \mathrm{H}-6 \alpha \mathrm{v}, \mathrm{H}-14 \mathrm{proS} \mathrm{v}, \mathrm{H}-15 \mathrm{v} ; \mathrm{H}-5 \beta, \mathrm{H}-5 \alpha$ s, H-6 β v, Ha-benzyl-CH ${ }_{2}$ w; H- 6α, H- 5α v, H- 6β s, H-9 w; H-6 β, $\mathrm{H}-5 \beta \mathrm{v}, \mathrm{H}-6 \alpha \mathrm{~s}, \mathrm{H}-9 \mathrm{v}$, H a-benzyl-CH2 v, Hb-benzyl-CH V_{2} v; H-9, $\mathrm{H}-6 \alpha$ w, H-6 $\mathrm{v}, \mathrm{H}-10 \mathrm{~s} ; \mathrm{H}-10, \mathrm{H}-9 \mathrm{~s} ; \mathrm{H}-11, \mathrm{H}-12 \mathrm{~s} ; \mathrm{H}-12, \mathrm{H}-1$ w, H-11 s; H-14proR, H-3 v, H-14proS s, H-15 v, H-19 w; H-14proS, H-3 v, H-5 α v, H-14proR s, H-15 w; H-15, H-3 w, $\mathrm{H}-5 \alpha \mathrm{v}, \mathrm{H}-14 \mathrm{proR} v, \mathrm{H}-14 \mathrm{proS} \mathrm{w}, \mathrm{H}-20 \mathrm{~s}, \mathrm{H}-2^{\prime \prime} \mathrm{m} ; \mathrm{H}-18 \mathrm{E}$, H-18Z s, H-19 s; H-18Z, H-18E s, H-19 w, H-20 s; H-19, H-14proR w, H-18E s, H-18Z w, H-20 v; H-20, H-3 m, H-15 s, H-18Z s, H-19 v, H-21 s, H-2" w; H-21, H-20 s, H-1' m; Ha-benzyl-CH $2, \mathrm{H}-5 \beta \mathrm{w}, \mathrm{H}-6 \beta \mathrm{w}, \mathrm{Hb}$-benzyl- $-\mathrm{CH}_{2} \mathrm{~s}, 2^{\prime \prime}-\mathrm{H} \mathrm{m} ; \mathrm{Hb}-$ benzyl-CH2, H-3 m, H-6 β v, Ha-benzyl-CH $2 \mathrm{~s}, \mathrm{H}-2^{\prime \prime} \mathrm{m}$.
$\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-Tetraacetyl-18,19-dihydrovincosamide (4b) Prepared from 3d. $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-Tetraacetyl-4-(4'"-bromobenzyl)vincoside (3d, $0.43 \mathrm{~g}, 0.5 \mathrm{mmol}$) was dissolved in absolute $\mathrm{MeOH}(10.0 \mathrm{~mL})$ and hydrogenated in the presence of 10% Pd on charcoal at room temperature for 30 min , then the catalyst was filtered, and the solution stirred for 2 h . After evaporation of the solvent $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-18,19-di hydrovincosamide (4b) was obtained as a pale yellow amorphous solid ($0.28 \mathrm{~g}, 84 \%, \mathrm{R}_{\mathrm{f}} 0.84$); anal. C 60.61%, H 5.85%, N 4.02%, calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{12}$, C 61.05%, H 6.03\%, N 4.19%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 7.51\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{9,10}=\right.$ $\left.7.5{ }^{4}{ }^{4}{ }_{9.11}=1.2 \mathrm{~Hz}, \mathrm{H}-9\right), 7.42\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J} 15,17=2.5 \mathrm{~Hz}, \mathrm{H}-17\right)$, $7.34\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 11,12=8.0,{ }^{4} \mathrm{~J} 10,12=1.2 \mathrm{~Hz}, \mathrm{H}-12\right), 7.19(1 \mathrm{H}$, ddd, $\left.{ }^{3}{ }^{3}{ }_{11,12}=8.0,{ }^{3}{ }^{10,11}=7.5,{ }^{4}{ }^{1}{ }_{9,11}=1.2, \mathrm{~Hz}, \mathrm{H}-11\right), 7.12(1 \mathrm{H}$, $\left.{ }^{3} \mathrm{~J} 10,11=\mathrm{td}, 7.5,{ }^{3} \mathrm{~J} 9.10=7.5,{ }^{4} \mathrm{~J} 10.12=1.2 \mathrm{~Hz}, \mathrm{H}-10\right), 5.40(1 \mathrm{H}$, d, $\left.{ }^{3}{ }^{3} 20,21=1.9 \mathrm{~Hz}, \mathrm{H}-21\right), 5.26\left(1 \mathrm{H}, \mathrm{t}, 3^{3}{ }_{2,3}={ }^{3} \mathrm{~J}^{3,4^{\prime}}=9.8 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-3^{\prime}\right), 5.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \alpha), 5.10\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}^{3} \mathrm{z}^{\prime} 4^{\prime}={ }^{3} \mathrm{~J} \mathrm{~m}^{4}, 5^{\prime}=9.8 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-4^{\prime}\right), 5.02\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{I}^{\prime}, 2^{\prime}=8.0,3^{3} 2^{\prime}, 3^{3}=9.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.93(1 \mathrm{H}$,
 $=12.6$ ³ $^{5^{\prime}, 6^{\prime} \mathrm{a}}=3.9 \mathrm{~Hz}$; H-6'a), $4.15\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{6^{\prime}, 6^{\prime} \mathrm{b}}=12.6\right.$, $\left.{ }^{3}{ }_{5,}, 6^{\prime} \mathrm{b}=2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.78$ (1 H , ddd, ${ }^{3}{ }^{3} \mathrm{~m}^{\prime}, 5^{\prime}=9,8,{ }^{3} \mathrm{~J}^{5,6^{\prime} \mathrm{a}}=$ $\left.3.9,{ }^{3} \mathrm{~J}_{5^{\prime}, 6^{\prime} \mathrm{b}}=2.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 2.96\left(1 \mathrm{H}\right.$, dddd, ${ }^{3} \mathrm{~J}_{145,15}=13.0$, ${ }^{3} \mathrm{~J} 15,20$ $\left.=6.2,{ }^{3}{ }_{14 R, 15}=3.5,{ }^{4}{ }_{15,17}=2.5 \mathrm{~Hz}, \mathrm{H}-15\right), 2.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \beta$), $2.80\left(2 \mathrm{H}, \mathrm{H}_{2}-6\right), 2.23\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} \mathrm{~J}_{14 \mathrm{R}, 14 \mathrm{~S}}=12.7 \mathrm{~B}^{3} \mathrm{~J}_{3,14 \mathrm{R}}={ }^{3} \mathrm{~J}_{14 R, 15}\right.$ $=3.6 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{proR}$), 2.11, 2.04, 2.02, 1,98 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ CO), 1.90 (1 H, dddd, ${ }^{3} \mathrm{~J} 19 b, 20=9.8$, $^{3} \mathrm{~J} 15,20=6.2,{ }^{3} \mathrm{~J} 19 \mathrm{a}, 20=5.0$, $\left.{ }^{3} \mathrm{~J} 20,21=1.9 \mathrm{~Hz}, \mathrm{H}-20\right), 1.66\left(1 \mathrm{H}, \mathrm{q}^{2}{ }^{2} \mathrm{~J}{ }_{14 \mathrm{R}, 145}={ }^{3} \mathrm{~J} 3,145={ }^{3} \mathrm{~J} 145,15\right.$ $=12.7 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{proS}), 1.36\left(1 \mathrm{H}\right.$, dqd, ${ }^{2}{ }^{2}{ }_{19 a, 19 \mathrm{~b}}=14.3$, ${ }^{3}{ }^{3}{ }_{18,19}=$ 7.5 , $\left.{ }^{3} \mathrm{~J} 19 \mathrm{a}, 20=5.0 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a}\right)$, $1.13\left(1 \mathrm{H}, \mathrm{ddq},{ }^{2} \mathrm{~J} 19 \mathrm{a}, 19 \mathrm{~b}=14.3\right.$; ${ }^{3} \mathrm{~J} 19 \mathrm{~b}, 20=9.8$; $\left.{ }^{3} \mathrm{~J}{ }_{18,19}=7.5 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{~b}\right), 0.95$ ($3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}{ }_{18,19}=7.5$ $\mathrm{Hz}, \mathrm{H}-18)$. Further ${ }^{1} \mathrm{H}$ coupling constants determined in $\mathrm{C}_{6} \mathrm{D}_{6}:{ }^{5}{ }^{5}{ }_{3,6 \alpha}=2.3,{ }^{2}{ }^{5}{ }_{5 \alpha, 5 \beta}=12.3,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \alpha}=4.8,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \beta}=1.3$, $\left.{ }^{3}{ }_{5 \beta, 6 \alpha}=12,3,{ }^{3}\right]_{5 \beta, 6 \beta}=3.3,{ }^{2}{ }_{6 \alpha, 6 \beta}=14.5 \mathrm{~Hz} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 170,6,169.9,169.8,169.5$ (each $\mathrm{CH}_{3} \mathrm{CO}$), 163.3 (s, C-22), 146.7 (d, C-17), 136.4 (s, C-13), 132.9 (s, C-2), 126.7 (s, C-8), 122.1 (d, C-11), 119.7 (d, C-10), 118.3 (d, C-9), 111.0 (d, C-12), 109.4 ($\mathrm{s}, \mathrm{C}-16$), 108.6 ($\mathrm{s}, \mathrm{C}-7$), 95.9 (d, C-21), 95.0 (d, C-1'), 72.3 ($\mathrm{d}, \mathrm{C}-3^{\prime}$), 72.1 ($\mathrm{d}, \mathrm{C}-5^{\prime}$), 70.6 ($\left.\mathrm{d}, \mathrm{C}-2^{\prime}\right), 68.3$ ($\mathrm{d}, \mathrm{C}-4^{\prime}$), 61.8 (t, C-6'), 53.2 (d, C-3), 39.5 (t, (C-5), 38.0 (d, C-20), 31.1 (t, C-14), 27.4 (d, C-15), 21.0 (t, C-6), 20.7-20.5 ($\mathrm{CH}_{3} \mathrm{CO}$), 17.6 (t, C-19), 11.9 (q, C-18); NOESY cross-peaks H-3, H-14proR w, H-15 w; H-5 $\alpha, \mathrm{H}-5 \beta$ s, H- 6α w; H-5 $, \mathrm{H}-5 \alpha \mathrm{~s}, \mathrm{H}-6 \beta$ w; H- 6α, H-5 α w, H-6 β s; H-6, $\mathrm{H}-5 \beta$ w, H-6 α; H-14proR, H-3 w, H-14proS s; H-14proS, H-14proR s; H-15, H-3 w, H-20 m; H ${ }_{3}$ 18, H-21 s, $\mathrm{H}_{2}-19 \mathrm{~m} ; \mathrm{H}_{2}-19, \mathrm{H}_{3}$ - $18 \mathrm{~m}, \mathrm{H}-20 \mathrm{~m} ; \mathrm{H}-20, \mathrm{H}-15 \mathrm{~m}$, $\mathrm{H}_{2}-19 \mathrm{~m}, \mathrm{H}-21 \mathrm{~m} ; \mathrm{H}-21, \mathrm{H}_{3}-18 \mathrm{~s}, \mathrm{H}-20 \mathrm{~m}, \mathrm{H}-\mathrm{l}^{\prime} \mathrm{m}$.
$\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-Tetraacetyl-18,19-dihydrovincosamide (4b) Prepared from Vincosamide (4a). In a mixture of absol ute pyridine (2.0 mL) and (Ac$)_{2} \mathrm{O}(0.8 \mathrm{~mL}, 8.0 \mathrm{mmol}$) vincosamide (4a, $0.25 \mathrm{~g}, 0.4 \mathrm{mmol}$) was stirred at room temperature for 2 h , the reaction mixture was poured on to ice (5.0 g), and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layer was washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($2 \times 10 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent evaporated. The $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetylvincosamide (4c = 4, $R=$ acetyl, $X=$ vinyl) was obtained as a pale yellow powder (0.26 g , single spot, $\mathrm{R}_{\mathrm{f}} 0.86$) and was used immediately.
$\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-Tetraacetylvincosamide (4c) was dissolved in absol ute methanol $(3.0 \mathrm{~mL})$ and hydrogenated in the presence
of $10 \% \mathrm{Pd}$ on charcoal at room temperature for 20 min . After filtration of the catalyst and evaporation of the solvent, $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-18,19-di hydrovincosamide (4b) was obtained as a pale yellow amorphous powder ($0.16 \mathrm{~g}, 47 \%$ calculated from 4a, single spot, $R_{f} 0.84$). The spectroscopic data established the identity to $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-18,19-dihydrovincosamide (4b) prepared from $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-4($4{ }^{\prime \prime}$-bromobenzyl) vincoside (3d) (see above).

Strictosamide (5a). Strictosidine hydrochloride ${ }^{8}(3 a \cdot \mathrm{HCl}$, $0.27 \mathrm{~g}, 0.5 \mathrm{mmol}$) was stirred in 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution at $70^{\circ} \mathrm{C}$ for 2 h . The cooled reaction mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$), the combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and dried, and the solvent was evaporated. Strictosamide (5a) was obtained as a pale yellow solid ($0.19 \mathrm{~g}, 80 \%$, single spot, $\mathrm{R}_{\mathrm{f}} 0.30$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 250$ $\mathrm{MHz}) \delta 7.55\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{11,12}=7.3\right.$, $\left.{ }^{4} \mathrm{~J}_{10,12}=1.2 \mathrm{~Hz}, \mathrm{H}-12\right), 7.54$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J} 5,17=2.4 \mathrm{~Hz}, \mathrm{H}-17\right), 7.49\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 9,10=8.0,{ }^{4} \mathrm{~J} 9,11\right.$ $=1.2 \mathrm{~Hz}, \mathrm{H}-9), 7.24\left(1 \mathrm{H}, \mathrm{td},{ }^{3} \mathrm{~J}_{10,11}={ }^{3} \mathrm{~J}_{11,12}=7.3,{ }^{4} \mathrm{~J}{ }_{9,11}=1.2\right.$ $\mathrm{Hz}, \mathrm{H}-11), 7.15\left(1 \mathrm{H}, \mathrm{ddd},{ }^{3} \mathrm{~J} \mathrm{~g}, 10=8.0,{ }^{3} \mathrm{~J}^{30,11}=7.3^{4} \mathrm{~J}^{40,12}=1.2\right.$ $\mathrm{Hz}, \mathrm{H}-10), 5.82\left(1 \mathrm{H}, \mathrm{dt}^{3} \mathrm{~J}{ }_{182,19}=17.1,{ }^{3}{ }^{3}{ }^{188 E, 19}={ }^{3} \mathrm{~J}{ }_{19,20}=10.0\right.$ $\mathrm{Hz}, \mathrm{H}-19), 5.57\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J} 20.21=1.8 \mathrm{~Hz}, \mathrm{H}-21\right), 5.53(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{3} \mathrm{~J} 182,19=17.1,{ }^{2} \mathrm{~J} 18 \mathrm{E}, 18 \mathrm{z}=2.1 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{Z}\right), 5.48\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}{ }_{18 \mathrm{E}, 19}\right.$ $\left.=10.0,{ }^{2} \mathrm{~J} 18 \mathrm{E}, 18 \mathrm{z}=2.1 \mathrm{~Hz}, \mathrm{H}-18 \mathrm{E}\right), 5.23\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{3,14 \mathrm{R}}=2.0\right.$, $\left.{ }^{3} \mathrm{~J} 3,14 \mathrm{~S}=6.1 \mathrm{~Hz}, \mathrm{H}-3\right), 5.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \beta), 4,74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}^{1} \mathrm{I}^{\prime} 2^{2}=\right.$ $\left.7.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.97\left(1 \mathrm{H},{ }^{2} \mathrm{~J}^{\prime} 6^{\prime}, 6^{\prime} \mathrm{b}=11.7,3^{3} 5^{\prime}, 6^{\prime} \mathrm{a}=1.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right)$, $3.65\left(1 \mathrm{H},{ }^{2} \mathrm{~J} 6^{\prime}, 6^{\prime} \mathrm{b}=11.7,{ }^{3} \mathrm{~J}_{5,6^{\prime} \mathrm{b}}=5.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.20-3.50(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}\right), 2.80-3.35$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-5 \alpha, \mathrm{H}-6 \alpha, \mathrm{H}-6 \beta, \mathrm{H}-15$, $\mathrm{H}-20), 2.63\left(1 \mathrm{H}, \mathrm{ddd},{ }^{2} \mathrm{~J}_{14 \mathrm{R}, 145}=14.0{ }^{3} \mathrm{~J}_{14 \mathrm{R}, 15}=4.3,{ }^{3} \mathrm{~J}_{3,14 \mathrm{R}}=\right.$ $2.0 \mathrm{~Hz}, \mathrm{H}-14$ proR $), 2.20\left(1 \mathrm{H}, \mathrm{td},{ }^{2} \mathrm{~J}_{14 R, 145}={ }^{3} \mathrm{~J}_{145,15}=14.0,3^{3} 3,14 \mathrm{~S}\right.$ $=6.1 \mathrm{~Hz}, \mathrm{H}-14 \mathrm{proS} ;{ }^{13} \mathrm{C}$ NMR spectral data are comparable to those reported by Heckendorf et al. ${ }^{24}$
$\mathbf{O}^{\prime}, \mathbf{O}^{\prime}, \mathbf{O}^{\prime}, \mathrm{O}^{\prime}$-Tetraacetyl-18,19-dihydrostrictosamide (5b) from 5a. Strictosamide ($5 \mathrm{a}, 0.14 \mathrm{~g}, 0.25 \mathrm{mmol}$) was stirred in a mixture of absolute pyridine (1.5 mL) and (Ac$)_{2} \mathrm{O}(0.6 \mathrm{~mL}$) at room temperature for 2 h , then poured onto ice (10 mL) and extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with molar aqueous $\mathrm{HCl}(10 \mathrm{~mL}), 5 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (10 mL), $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and dried. After evaporation of the solvent $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}-$ tetraacetylstrictosamide ($\mathbf{5 c}=\mathbf{5}, \mathrm{R}=$ acetyl, $\mathrm{X}=$ vinyl) was obtained as a yellow solid (0.16 g , single spot, $\mathrm{R}_{\mathrm{f}} 0.87$). The sample was used immediately for preparation of $\mathbf{5 b}$.
$\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}-$ Tetraacetylstrictosamide 5 c ($0.15 \mathrm{~g}, 0.23 \mathrm{mmol}$) was dissolved in MeOH (10 mL), and hydrogenated in the presence of 10% Pd on charcoal (0.10 g) at room temperature for 30 min . After filtration of the catalyst and evaporation of the solvent, $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-tetraacetyl-18,19-dihydrostrictosamide (5b) was obtained as a pale yellow amorphous solid (0.14 g , 70%, single spot, $\mathrm{R}_{\mathrm{f}} 0.84$); anal. C 60.72%, H 5.76%, N 3.97%, calcd for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{12}$, C 61.05%, H 6.03\%, N 4.19\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1), 7.41\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}^{2}, 10=\right.$ $\left.7.9,^{4} \mathrm{~J} 9,11=1.2 \mathrm{~Hz}, \mathrm{H}-9\right), 7.38\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J} 11,12=8.2,{ }^{4} \mathrm{~J}{ }^{10,12}=\right.$ $1.2 \mathrm{~Hz}, \mathrm{H}-12), 7.36\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J} 15,17=2.6 \mathrm{~Hz}, \mathrm{H}-17\right), 7.18(1 \mathrm{H}$, ddd, $\left.{ }^{3}{ }^{3} 11,12=8.2,{ }^{3} \mathrm{~J} 10,11=7.1,{ }^{4} \mathrm{~J} 9,11=1.2 \mathrm{~Hz}, \mathrm{H}-11\right), 7.09(1 \mathrm{H}$, ddd, $\left.{ }^{3}{ }^{3}{ }_{9,10}=7.9,{ }^{3} \mathrm{~J}_{10,11}=7.1,{ }^{4} \mathrm{~J}_{10,12}=1.2 \mathrm{~Hz}, \mathrm{H}-10\right), 5.38(1 \mathrm{H}$, d, $\left.{ }^{3}{ }_{20,21}=1.8 \mathrm{~Hz}, \mathrm{H}-21\right), 5.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime}\right), 5.02(1 \mathrm{H}, \mathrm{Hz}$, ddd, $\left.{ }^{2}{ }^{j}{ }_{5 \alpha, 5 \beta}=13.0,{ }^{3}{ }_{5 \beta, 6 \beta}=6.0,{ }^{3}{ }_{5 \beta, 6 \alpha}=1.0 \mathrm{~Hz}, \mathrm{H}-5 \beta\right), 5.01$ $\left(1 \mathrm{H}\right.$, dddd, ${ }^{3} \mathrm{~J}_{3,14 \mathrm{~S}}=5.5,{ }^{3} \mathrm{~J}_{3,14 \mathrm{R}}=2.8{ }^{5}{ }^{5}{ }_{3,6 \beta}=2.5,{ }^{5} \mathrm{~J}_{3,6 \alpha}=1.0$ $\mathrm{Hz}, \mathrm{H}-3), 4.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime}\right), 4.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}\right), 4.27(1 \mathrm{H}$,
 $\left.=12.6,3^{5} 5^{\prime} 6^{\prime} \mathrm{b}=2.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 3.03(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-5 \alpha), 2.96\left(1 \mathrm{H}, \mathrm{dtd},{ }^{3} \mathrm{~J} 145,15=13.6,{ }^{3} \mathrm{~J} 15,20={ }^{3} \mathrm{~J} 14 \mathrm{R}, 15=5.0\right.$, $\left.{ }^{4}{ }^{1}{ }_{15,17}=2.6 \mathrm{~Hz}, \mathrm{H}-15\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-6\right), 2.27(1 \mathrm{H}$, ddd, ${ }^{2}{ }^{2}{ }_{14 R, 145}=13.6,{ }^{3} \mathrm{~J} 14 R, 15=4.9,{ }^{3} \mathrm{~J} 3,14 \mathrm{R}=2.8 \mathrm{~Hz}, \mathrm{H}-14$ proR), 2.18 (1 H, td $^{2}{ }^{2} \mathrm{~J}_{14 R, 145}={ }^{3} \mathrm{~J}_{145,15}=13.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,145}=5.5 \mathrm{~Hz}$, H-14proS), 2.07, 1.99, 1.88, 1.20 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}$). 1.82 $\left(1 \mathrm{H}, \mathrm{dtd},{ }^{3} \mathrm{~J}_{19 \mathrm{~b}, 20}=9.7,{ }^{3} \mathrm{~J}_{19 \mathrm{a}, 20}={ }^{3} \mathrm{~J} 15,20=5.2,{ }^{3} \mathrm{~J} 20,21=1.8 \mathrm{~Hz}\right.$, $\mathrm{H}-20), 1.54\left(1 \mathrm{H}, \mathrm{dqd},{ }^{2} \mathrm{~J} 19 \mathrm{a}, 19 \mathrm{~b}=14.2,{ }^{3} \mathrm{~J} 18,19=7.5\right.$, ${ }^{3} \mathrm{~J}_{19 \mathrm{a}, 20}=$ $5.2 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{a}), 1.22\left(1 \mathrm{H}, \mathrm{ddq},{ }^{2} \mathrm{~J}{ }_{19 a, 19 b}=14.2,{ }^{3} \mathrm{~J} 19 \mathrm{~b}, 20=9.7\right.$, $\left.{ }^{3} \mathrm{~J}_{18,19}=7.5 \mathrm{~Hz}, \mathrm{H}-19 \mathrm{~b}\right), 1.02\left(3 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{18,19}=7.5 \mathrm{~Hz}, \mathrm{H}_{3}-18\right)$; further ${ }^{1} \mathrm{H}$ coupl ing constants determined in $\mathrm{C}_{6} \mathrm{D}_{6},{ }^{5} \mathrm{~J} 3,6 \alpha=1.0$, ${ }^{5} \mathrm{~J}_{3,6 \beta}=2.5,{ }^{2} \mathrm{~J}_{5 \alpha, 5 \beta}=13.0,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \alpha}=5.2,{ }^{3} \mathrm{~J}_{5 \alpha, 6 \beta}=12.5,{ }^{3} \mathrm{~J}_{5 \beta, 6 \alpha}=$ $1.0,{ }^{3}{ }^{3}{ }_{5 \beta, 6 \beta}=6.0,{ }^{2} \mathrm{~J}{ }_{6 \alpha, 6 \beta}=15.3,{ }^{3} \mathrm{~J}^{1}, 2^{2}=8.2,3^{2,3}=9.9,{ }^{3} \mathrm{~J}^{5,4^{\prime}}=$ 9.5 , ${ }^{3}{ }^{4}{ }^{4}, 5^{\prime}=9.9 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.6,170.0$, 169.5, 169.0 (each $\mathrm{CH}_{3} \mathrm{CO}$), 164.9s (C-22), 146.9d (C-17), 136.1s
(C-13), 132.8 (C-2), 127.5s (C-8), 122.2d (C-11), 119.8d (C-10), 118.0 d (C-9), 111.3d (C-12), 110.7s (C-16), 108.5s (C-7), 95.1d (C-21), 93.8 (C-1'), $72.1,72.0$ (C-3', C-5'), 68.3 (C-4'), 61.7 (C6^{\prime}), 70.0 ($\mathrm{C}-2^{\prime}$), 53.5 d (C-3), 43.7t (C-5), 37.9d (C-20), 25.7t (C14), 24.8d (C-15), 21.0t (C-6), 20.7, 20.6, 20.5, 19.2 ($\mathrm{CH}_{3} \mathrm{CO}$ of acetyl), 17.6t (C-19), 12.2q (C-18); NOESY cross-peaks (in $\mathrm{C}_{6} \mathrm{D}_{6}$), $\mathrm{H}-3, \mathrm{H}-5 \alpha \mathrm{~s}, \mathrm{H}-5 \beta$ w, H-14proR m, H-14proS m; H-5 α, $\mathrm{H}-3 \mathrm{~s}, \mathrm{H}-5 \beta \mathrm{~s}, \mathrm{H}-6 \alpha$ w; H-5 $\beta, \mathrm{H}-3 \mathrm{w}, \mathrm{H}-5 \alpha \mathrm{~s} ; \mathrm{H}-6 \alpha, \mathrm{H}-6 \beta \mathrm{~s}, \mathrm{H}-9$ m; H-6 , H-6 $\alpha \mathrm{s}, \mathrm{H}-9$ w; H-9, H-6 $\mathrm{m}, \mathrm{H}-6 \beta$ w, H-10 m, $2^{\prime}-\mathrm{OAc}$ $\mathrm{m} ; \mathrm{H}-10, \mathrm{H}-9 \mathrm{~m}, \mathrm{H}-11 \mathrm{~m} ; \mathrm{H}-11, \mathrm{H}-10 \mathrm{~m}, \mathrm{H}-12 \mathrm{~m}, \mathrm{~L}^{\prime}-\mathrm{OAc} v ;$ H-12, H-11 m, H-14proS w; H-14proS, H-3 m, H-12 w, H-14proR m; H-14proR, H-3 m, H-14proS m, H-15 w; H-15, H-14proR w, H-20 s, 2'-OAc w; H-17, H-1' w; H3-18, H-19a m, H-19b w, H-20 m, H-21 s; H-19a, H H_{3}-18 m, H-19b s; H-19b, H_{3}-18 m, H-19a m, H-20w, H-21w; H-20, H-15 s, $\mathrm{H}_{3}-18 \mathrm{~m}$, H-19b w, H-21 s; H-21, H3-18 m, H-19b w, H-20 s, H-1' m.
$\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}-$ Tetraacetyl-18,19-di hydrostrictosamide (5b) from 3c. $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}$-Tetraacetyl-4-(4"'bromobenzyl) strictosidine ($3 \mathrm{c}, 0.17 \mathrm{~g}, 0.2 \mathrm{mmol}$) was dissolved in absol ute MeOH and hydrogenated in the presence of 10% Pd on charcoal (0.05 g) at room temperature for 30 min . Triethylamine (0.07 mL , 0.5 mmol) was added and the reaction mixture refluxed for 1 h. After evaporation of the sol vent, the residue was dissolved in EtOAc (10 mL) and extracted with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The organic phase was dried and the solvent evaporated. $\mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime}-$ Tetraacetyl-18,19-dihydrostrictosamide (5b) was obtained as a pale yellow amorphous solid ($0.11 \mathrm{~g}, 84 \%$, single spot, R_{f} 0.84). According to its spectroscopic data, the sample was identical to 5b obtained from 5a.
Acknowledgment. Financial support of this work by the National Scientific Research Foundation is gratefully acknowledged.

References and Notes

(1) Part 5 of this series: Károlyházy, L.; Patthy-Lukáts, Á.; Szabó, L. F J. Phys. Org. Chem. 1998, 11, 622-631.
(2) Treimer, J.F.; Zenk, M. H. Eur. J . Biochem. 1979, 81, 225-233.
(3) Battersby, A. R.; Burnett, A. R.; Parsons, P. G. J. J . Chem. Soc. 1969, 1193-1200.
(4) Cordell, G. A. Lloydia 1974, 37, 219-298.
(5) Hutchinson, C. R.; Heckendorf, A. H.; Straugh, J. L.; Daddona, P. E.; Cane, D. E. J. Am. Chem. Soc. 1979, 101, 3358-3369.
(6) Arbain, D.; Putra, D. P.; Sargent, M. V. Aust. J' Chem. 1993, 46, 977985.
(7) Tits, M.; Brandt, V.; Wauters, J.-N.; Delaude, C.; Lkabres, G.; Angenot, L. Planta Med. 1996, 62, 73-74.
(8) Patthy-Lukáts, Á.; Károlyházy, L.; Szabó, L. F.; Podányi, B. J . Nat. Prod. 1997, 60, 69-75.
(9) Ohmori, O.; Kumazawa, K.; Hoshino, H.; Suzuki, T.; Morishima, Y.; K ohno, H.; Kitajima, M.; Sakai, S.; Takayama, H.; Aimi, N. Tetrahedron Lett. 1998, 39, 7737-7740.
(10) In the formulas, a biogenetic numbering system was used. ${ }^{11}$ For characterization of the stereochemical pattern of the possible isomers, a uniform system was constructed using the letters \mathbf{R} and \mathbf{S} for the configuration of the new chiral center C-3, the numbers 11, 12, etc. for the rotation pattern around the methylene bridge, letters \mathbf{N} and \mathbf{P} for the negative and positive conformation of dihydropyran and tetrahydropyridine rings, and the letters \mathbf{A} and \mathbf{E} for the axial and equatorial position of the eventual benzyl group, respectively.
(11) Le Men, J.; Taylor, W. I. Experientia 1965, 21, 508.
(12) ALCHEMY II molecular modeling system fro the IBM PC. Tripos Associates, Inc., St. Louis, MO.
(13) Lentz, P. J ., J r.; Rossmann, M. G. Chem Commun. 1969, 1269.
(14) Bohlmann, F.; Schumann, D. Tetrahedron Lett. 1965, 2435-2440.
(15) Bax, A. J. Magn. Reson. 1984, 57, 314-318
(16) Takayama, H.; Ohmori, O.; Subhadhirasakul, S.; Kitajima, M.; Aimi, N. Chem. Pharm. Bull. 1997, 45, 1231-1233.
(17) Uhrin, D.; Batta, G.; Hruby, V.J.; Barlow, P. N.; Kövér, K. E.J . Magn. Reson. 1998, 130, 155-161.
(18) Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; Altona, C. Tetrahedron 1980, 36, 2783.
(19) Aydin, R., Günther, H. Magn. Res. Chem. 1990, 28, 448-457.
(20) van Beuzekom, A. A.; de Leeuw, F. A. A. M.; Altona, C. Magn. Reson. Chem. 1990, 28, 68-74.
(21) (a) Schwarcz, J. A.; Cyr, N.; Perlin, A. Can. J . Chem. 1975, 53, 18721875. (b) Bock, K.; Pedersen, K. Acta Chem. Scan. 1977, B31, 354358. (c) Parella, T.; Sanchez-Ferrando, F.; Virgili, A. Magn. Res. Chem. 1994, 32, 657-664.
(22) Bandyopadhyay, T.; Wu, J.; Stripe, W. A.; Carmichael, I.; Serianni, A. S. J. Am. Chem. Soc. 1997, 119, 1737-1744.
(23) K ocsis, Á.; Pál, Z.; Szabó, L.; Tétényi, P.; Varga-Balázs, M. Eur. Pat. Appl. EP 156267, October 2, 1985; Chem. Abstr. 1986, 104, 149345q.
(24) Heckendorf, A. H.; Mattes, K. C.; Hutchinson, C. R.; Hagaman, E. W.; Wenkert, E. J. Org. Chem. 1976, 41, 2045-2047.

NP990150R

[^0]: * To whom correspondence should be addressed. Tel.: 3612171295. E-mail: szalasz@szerves.sote.hu.
 ${ }^{\dagger}$ Part 6 in the series Chemistry of Secologanin. For Part 5, see Károlyházy et al. ${ }^{1}$
 \ddagger Semmelweis University of Medicine.
 ${ }^{\text {§ }}$ Chinoin Pharmaceutical and Chemical Works, Ltd.

